Skip to main content

Advertisement

Log in

Persistent quasi-periodic turbidite activity off Saharan Africa and its comparability to orbital and climate cyclicities

  • Original
  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

Abstract

Based on a high-resolution sediment record from a submarine meandering canyon system offshore the present-day hyperarid Saharan Africa, two phases of turbidity-current activity can be distinguished during the past 13,000 years. Frequent, siliciclastic turbidity currents can be related to deglacial sea-level history, whereas rhythmically recurring fine-grained and carbonate-rich turbidity currents with recurrence times of roughly 900 years are inferred for the Holocene. Various trigger mechanisms can be considered to initiate turbidity currents, but only a few can explain a periodic turbidite activity. A comparison of Holocene turbidite recurrence times and basic cycles of 900 and 1,800 years found in various Holocene paleoclimate studies suggests that a previously unrecognized climate-related coupling may be active.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Antobreh AA, Krastel S (2006) Morphology, seismic characteristics and development of Cap Timiris Canyon, offshore Mauritania: a newly discovered canyon preserved off a major arid climatic region. Mar Petrol Geol 23(1):37–59

    Article  Google Scholar 

  • Babonneau N, Savoye B, Cremer M, Klein B (2002) Morphology and architecture of the present canyon and channel system of the Zaire deep-sea fan. Mar Petrol Geol 19:445–467

    Article  Google Scholar 

  • Bianchi GG, McCave IN (1999) Holocene periodicity in North Atlantic climate and deep-ocean flow south of Iceland. Nature 397:515–517

    Article  Google Scholar 

  • Bond G, Kromer B, Beer J, Muscheler R, Evans MN, Showers W, Hoffmann S, Lotti-Bond R, Hajdas I, Bonani G (2001) Persistent solar influence on north Atlantic climate during the Holocene. Science 294(5549):2130–2136

    Article  Google Scholar 

  • Bouma AH (1962) Sedimentology of some flysch deposits: a graphic approach to facies interpretation. Elsevier, Amsterdam

    Google Scholar 

  • Curray JR, Emmel FJ, Moore DG (2003) The Bengal Fan: morphology, geometry, stratigraphy, history and processes. Mar Petrol Geol 19(10):1191–1223

    Article  Google Scholar 

  • deMenocal P, Ortiz J, Guilderson T, Adkins J, Sarnthein M, Baker L, Yarusinsky M (2000a) Abrupt onset and termination of the African Humid Period: rapid climate responses to gradual insolation forcing. Quat Sci Rev 19(1–5):347–361

    Article  Google Scholar 

  • deMenocal P, Ortiz J, Guilderson T, Sarnthein M (2000b) Coherent high- and low-latitude climate variability during the Holocene warm period. Science 288:2198–2202

    Article  Google Scholar 

  • Fairbanks RG (1989) A 17,000 year glacio-eustatic sea-level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342:637–642

    Article  Google Scholar 

  • Faugères JC, Legigan P, Maillet N, Sarnthein M, Stein R (1989) Characteristics and distribution of Neogene turbidites at Site 657 (Leg 108, Cap Blanc continental rise, Northwest Africa): variations in turbidite source and continental climate. In: Ruddiman W, Sarnthein M, Baldauf J, Backman J, Bloemendal J et al (eds) Proceedings of the Ocean Drilling Program, Scientific Results, vol. 108. Texas A & M University, College Station, TX, pp 329–348

    Google Scholar 

  • Flood RD, Piper DJW (1997) Amazon Fan sedimentation: the relationship to equatorial climate change, continental denudation, and sea-level fluctuations. In: Flood RD, Piper DJW, Klaus A, Peterson LC (eds) Proceedings of the Ocean Drilling Program, Scientific Results, vol. 155. Texas A & M University, College Station, TX, pp 653–676

    Google Scholar 

  • Fukushima Y, Parker G, Pantin HM (1985) Prediction of ignitive turbidity currents in Scripps Submarine Canyon. Mar Geol 67:55–81

    Article  Google Scholar 

  • Gasse F (2000) Hydrological changes in the African tropics since the Last Glacial Maximum. Quat Sci Rev 19(1/5):189–211

    Article  Google Scholar 

  • GEBCO (2003) IHO-UNESCO, General Bathymetric Chart of the Oceans. Digital edition 2003. www.ngdc.noaa.gov/mgg/gebco

  • Gorsline DS (1996) Depositional events in Santa Monica Basin, California Borderland, over the past five centuries. Sediment Geol 104:73–88

    Article  Google Scholar 

  • Hanebuth T, Stattegger K, Grootes PM (2000) Rapid flooding of the Sunda Shelf: a late-glacial sea-level record. Science 288:1033–1035

    Article  Google Scholar 

  • Henrich R, Hanebuth TJJ, Krastel S, Neubert N, Wynn RB (2007) Architecture and sediment dynamics of the Mauritania Slide Complex. Mar Petrol Geol (in press), DOI: 10.1016/j.marpetgeo.2007.05.008

  • Hughen KA, Baillie MGL, Bard E, Beck JW, Bertrand CJH, Blackwell PG, Buck CE, Burr GS, Cutler KB, Damon PE, Edwards RL, Fairbanks RG, Friedrich M, Guilderson TP, Kromer B, McCormac G, Manning S, Ramsey CB, Reimer PJ, Reimer RW, Remmele S, Southon JR, Stuiver M, Talamo S, Taylor FW, van der Plicht J, Weyhenmeyer CE (2004) Marine04 marine radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46(3):1059–1086

    Google Scholar 

  • Inman DL, Nordstrom CE, Flick RE (1976) Currents in submarine canyons: an air-sea-land interaction. Annu Rev Fluid Mech 8:275–310

    Article  Google Scholar 

  • Jenner KA, Piper DJW, Campbell DC, Mosher DC (2007) Lithofacies and origin of late Quaternary mass transport deposits in submarine canyons, central Scotian Slope, Canada. Sedimentology 54:19–38

    Article  Google Scholar 

  • Keeling CD, Whorf TP (2000) The 1,800-year oceanic tidal cycle: a possible cause of rapid climate change. Proc Natl Acad Sci USA 97:3814–3819

    Article  Google Scholar 

  • Khripounoff A, Vangriesheim A, Babonneau N, Crassous P, Dennielou B, Savoye B (2003) Direct observation of intense turbidity current activity in the Zaire submarine valley at 4000 m water depth. Mar Geol 194:151–158

    Article  Google Scholar 

  • Kounkou GL, Barusseau JP (1988) Terrigenous sedimentation of the upper Quaternary in the Cayar deep-sea fan (Senegal-Gambia). Oceanol Acta 11(4):359–368

    Google Scholar 

  • Krastel S, Hanebuth TJJ, Antobreh AA, Henrich R, Holz C, Kölling M, Schulz HD, Wien K, Wynn RB (2004) Cap Timiris Canyon: a newly discovered channel-system off Mauritania. Eos Trans Am Geophys Union 85(42):417–432

    Article  Google Scholar 

  • Krastel S, Wynn RB, Hanebuth TJJ, Henrich R, Holz C, Meggers H, Kuhlmann H, Georgiopoulou A, Schulz HD (2006) Mapping of seabed morphology and shallow sediment structure of the Mauritania continental margin, North Africa: some implications on the geohazard potential. Norwegian J Geol 86:163–176

    Google Scholar 

  • Kudrass HR, Michels KH, Wiedicke M, Suckow A (1998) Cyclones and tides as feeders of a submarine canyon off Bangladesh. Geology 26(8):715–718

    Article  Google Scholar 

  • Kuhlmann H, Meggers H, Freudenthal T, Wefer G (2004) The transition of the monsoonal and the N Atlantic climate system off NW Africa during the Holocene. Geophys Res Lett 31:L22204

    Article  Google Scholar 

  • Lancaster N, Kocurek G, Singhvi A, Pandey V, Deynoux M, Ghienne J-F, Lô K (2002) Late Pleistocene and Holocene dune activity and wind regimes in the western Sahara Desert of Mauritania. Geology 30(11):991–994

    Article  Google Scholar 

  • Loutre MF, Berger A, Bretagnon P, Blanc P-L (1992) Astronomical frequencies for climate research at the decadal to century time scale. Clim Dyn 7:181–194

    Article  Google Scholar 

  • Piper DJW (2005) Late Cenozoic evolution of the continental margin of eastern Canada. Norwegian J Geol 85:305–318

    Google Scholar 

  • Pirmez C, Imran J (2003) Reconstruction of turbidity currents in Amazon Channel. Mar Petrol Geol 20(6/8):823–849

    Article  Google Scholar 

  • Reynolds S (1987) A recent turbidity current event, Hueneme Fan, California: reconstruction of flow properties. Sedimentology 34:129–137

    Article  Google Scholar 

  • Rust U, Wienecke F (1973) Bathymetrische und geomorphologische Bearbeitung von submarinen “Einschnitten” im Seegebiet vor Westafrika. Ein methodischer Versuch. Münchner Geogr Abh 9:53–66

    Google Scholar 

  • Sarnthein M, Diester-Haass L (1977) Eolian-sand turbidites. J Sediment Petrol 47:868–890

    Google Scholar 

  • Sarnthein M, Thiede J, Pflaumann U, Erlenkeuser H, Fütterer D, Koopmann B, Lange H, Seibold E (1982) Atmospheric and oceanic circulation patterns off Northwest Africa during the past 25 million years. In: von Rad U, Hinz K, Sarnthein M, Seibold E (eds) Geology of the Northwest African continental margin. Springer, Berlin Heidelberg New York, pp 545–604

    Google Scholar 

  • Schulz HD (2003) Report and preliminary results of METEOR cruise M58/1, Dakar–Las Palmas, 15.04–12.05.2003. Universität Bremen, Bremen

    Google Scholar 

  • Schulz M, Paul A (2002) Holocene climate variability on centennial-to-millennial time scales. 1. Climate records from the North-Atlantic realm. In: Wefer G, Berger W, Behre K-E, Jansen E (eds) Climate development and history of the North Atlantic realm. Springer, Berlin, pp 41–54

    Google Scholar 

  • Seibold E, Hinz K (1976) German cruise to the continental margin of North West Africa in 1975. General report and preliminary results from “Valdivia” 10 and “Meteor” 39. Meteor Forschungsergebnisse 25(C):47–80

    Google Scholar 

  • Shanmugam G, Moiola RJ (1982) Eustatic controls of turbidites and winnowed turbidites. Geology 10:231–235

    Article  Google Scholar 

  • Steinke S, Kienast M, Hanebuth TJJ (2003) The importance of sea-level variations and shelf palaeo-morphology in governing shelf margin and slope sedimentation: examples from the southern South China Sea during the last deglaciation. Mar Geol 201:179–206

    Article  Google Scholar 

  • Stow DAV, Howell DG, Nelson CH (1985) Sedimentary, tectonic, and sea-level controls. In: Bouma AH, Normark WR, Barnes NE (eds) Submarine fans and related turbidite systems. Springer, Berlin, pp 15–22

    Google Scholar 

  • Stuiver M, Reimer PJ (1993) Radiocarbon calibration program CALIB REV. 5.0.1. Radiocarbon 35:215–230

    Google Scholar 

  • Swezey C (2001) Eolian sediment responses to late Quaternary climate changes: temporal and spatial patterns in the Sahara. Palaeogeogr Palaeoclimatol Palaeoecol 167(1/2):119–155

    Article  Google Scholar 

  • von Rad U, Tahir M (1997) Late Quaternary sedimentation on the outer Indus shelf and slope (Pakistan): evidence from high-resolution seismic data and coring. Mar Geol 138(3/4):193–196

    Google Scholar 

  • Vörösmarty CJ, Fekete BM, Meybeck M, Lammers RB (2000) Global system of rivers: its role in organizing continental land mass and defining land-to-ocean linkages. Global Biogeochem Cycles 14(2):599–621

    Article  Google Scholar 

  • Weaver PPE, Kuijpers A (1983) Climatic control of turbidite deposition on the Madeira Abyssal Plain. Nature 306:360–363

    Article  Google Scholar 

  • Weaver PPE, Wynn RB, Kenyon NH, Evans J (2000) Continental margin sedimentation, with special reference to the north-east Atlantic margin. Sedimentology 47:239–256

    Article  Google Scholar 

  • Weber ME, Wiedicke-Hombach M, Kudrass HR, Erlenkeuser H (2003) Bengal Fan sediment transport activity and response to climate forcing inferred from sediment physical properties. Sediment Geol 155:361–381

    Article  Google Scholar 

  • Weltje GJ, de Boer PL (1993) Astronomical induced paleoclimatic oscillations reflected in Pliocene turbidite deposits on Corfu (Greece): implications for the interpretation of higher order cyclicity in ancient turbidite systems. Geology 21:307–310

    Article  Google Scholar 

  • Wessel P, Smith WHF (1991) Free software helps map and display data. Eos Trans Am Geophys Union 72:445–445

    Article  Google Scholar 

  • Wynn RB, Weaver PPE, Masson DG, Stow DAV (2002) Turbidite depositional architecture across three interconnected deep-water basins on the north-west African margin. Sedimentology 49(4):669–695

    Article  Google Scholar 

  • Zaragosi S, Auffret GA, Faugeres J-C, Garlan T, Pujol C, Cortijo E (2000) Physiography and recent sediment distribution of the Celtic Deep-Sea Fan, Bay of Biscay. Mar Geol 169(1–2):207–237

    Article  Google Scholar 

  • Zühlsdorff C, Wien K, Stuut JBW, Henrich R (2007) Late Quaternary sedimentation within a submarine channel-levee system offshore Cap Timiris, Mauritania. Mar Geol 240:217–234

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to J. Bardenhagen for preparing the carbonate data. R.B. Wynn and K. Wien are cordially acknowledged for discussion. Moreover, we thank B. Dennielou, N.C. Mitchell, and M. Sarnthein for their improvements, as well as D.J.W. Piper and G. Uenzelmann-Neben for their reviews. We are grateful for constructive comments and corrections by the editors of GML. Data presented in this study are available at http://www.pangaea.de. This work was funded by the Deutsche Forschungsgemeinschaft as part of the DFG-Research Center ‘Ocean Margins’ of the University of Bremen. This is contribution RCOM0523.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Zühlsdorff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zühlsdorff, C., Hanebuth, T.J.J. & Henrich, R. Persistent quasi-periodic turbidite activity off Saharan Africa and its comparability to orbital and climate cyclicities. Geo-Mar Lett 28, 87–95 (2008). https://doi.org/10.1007/s00367-007-0092-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00367-007-0092-0

Keywords

Navigation